NEMMO Project

On the Cutting Edge of Tidal Blade Design and Materials

December 8th 2021 Ocean Energy Europe 2021 Annual Conference Side event

Main Goals and S&T objectives

Design, model and test downscaled prototypes of larger, lighter and more durable composite blades for >2MW floating tidal turbines to reduce LCoE of tidal energy to €0.15/kWh, meeting 2025 SET-Plan targets.

NEMMO is about **BLADES!**

Main Goals and S&T objectives

The NEMMO project has been designed according to a **holistic approach** in which the following elements are integrated:

- 1. **Simulation techniques** for hydrodynamic loads and velocity profiles including cavitation vortexes.
- 2. Available data from large scale off-shore demonstrators.
- 3. Novel testing procedures to replicate the real stresses occurring on composite blades
- Advanced technologies to increase the mechanical, hydrodynamic, aging and fouling performance of composite blades.
- 5. An extensive testing campaign, including the novel testing procedures to develop **behavioural models** for composite blades and evaluate the performance increase.
- 6. Innovative **methodologies to design** optimised composite blades
- **7. Testing and validation to TRL 5** of the NEMMO optimized composite blade designs.

Main Goals and S&T objectives

Scientific & Technological objectives:

- ✓ Novel blade designs with enhanced hydrodynamic performance due to the implementation of the different solutions, active flow control, materials and surfaces
- ✓ New nano-enhanced composites with properties that increase fatigue-, impact-, cavitation- and bio-fouling resistance of novel blade designs to prevent failures.
- ✓ Model, design and test the **lifespan and resistance** of the new composites for tidal turbine blades.

Economic objectives

The collective result of these innovations is **70% reduction in LCoE** for tidal energy due to:

- ✓ **50% CapEx reduction** (lower material consumption and 25% lower cost of new composites),
- √ 2% lower Fixed Charge Rate (increased understanding of failure and fatigue mechanisms and more durable composites with 66% higher lifespan),
- ✓ **40% reduction in O&M** (reduced cavitation wear, bio-fouling and ageing),
- 20% increase in Annual Energy Production (enhanced hydrodynamic performance and higher inlet flow speeds for tidal turbine).

Participants and consortium synergies

Participant No./Status	Participant Organisation Name/[Short Name]	Country
1 (Coordinator) / RTO	Tecnalia Research & Innovation [TECNALIA]	Spain
2.SME	Grupo INPRE Composites [INPRE]	Spain
3.RTO	Israel Institute of Technology Technion [TECHNION]	Israel
4.RTO	Dublin City University [DCU]	Ireland
5.RTO	Association Pour Le Developpement De L'enseignement Et Des Recherches Aupres Des	France
	Universites, Des Centres De Recherche Et Des Entreprises D'aquitaine [ADERA]	
6.RTO	Fundación para el Desarrollo y la Innovación Tecnológica [FUNDITEC]	Spain
7.SME	Sagres SL [SAGRES] / Magallanes Renovables [MAG]	Spain
8.RTO	SSPA Sweden AB [SSPA]	Sweden
9.RTO	Instituto Tecnológico de Aragón [ITA]	Spain
10.SME	SP Nano Ltd. [SPNano]	Israel
11. IAG	Ocean Energy Europe [OEE]	Belgium
12. RTO	Blade Test Centre A/S [BLAEST]	Denmark

7 countries.

- > NEMMO gathers the entire value chain:
- o **2 industrial partners** that will directly commercialise NEMMO results :
 - SPNano: Their SP1/CNT technology is being forecasted to impact, wind energy and EV market
 - INPRE: composite blade manufacturer, having manufactured six 9m-long-blades for MAG.
- 8 RTD partners to provide leading edge technological advances
- The largest global network of ocean energy professionals (OEE) will promote NEMMO results to their members and to potential investors and stakeholders in their European links.
- An end user (MAGALLANES) within the consortium facilitates early assimilation of results by industry while generating the credibility essential for market success

Participants and consortium synergies

Expected results

From a **business perspective**, the following industrial activities and services are expected to be generated:

Services:

- Simulation and composite blade design services for the composite blade manufacturing industry based on the novel LES MIRACLES codes and generated models
- **Testing of tidal composite blades** provided by research and testing centres according to novel testing procedures.

Products

- Nano-enhanced composites for tidal energy devices, increasing efficiency and enabling scale-up over 2MW.
- Optimized blades design for tidal generators.
- **Novel coatings** with enhanced harsh marine environment conditions

Expected results

- ✓ By 2022, NEMMO innovations will have been validated at TRL 4-5, generating evidence of increased hydrodynamic performance and reliability of blades and potential to lower LCOE and meet SET-Plan targets for tidal energy.
- ✓ This will allow for:
 - development and testing at full-scale of tidal turbine blades and test-rigs
 - validation of models and novel designs
 - evaluation of new composite material performance at real scale.
- ✓ The demonstration at full-scale will cost around €15 million. This investment is planned to be raised from public funding such as EC or from private venture capitalists or a combination of both.
- ✓ By 2025, the time the consortium plans to reach the market, we expect the EU ocean energy supply chains to have fully paved the way for easier commercialisation of NEMMO innovations.

Thank you for your attention!

Pablo Benguria (Project Coordinator)

www.nemmo.eu

@Nemmo Project info@nemmo.eu

