NEMMO : On the cutting edge of tidal blade design and materials

December 8th, 2021

Anti-fouling and cavitation resistance coatings for tidal blades

& TECHNOLOGY ALLIANCE

Dulce Muñoz Ph.D

tecnal:a i Cance Pranout MEMBER OF BASOLIE RESE

Objective

The **NEMMO** project seeks to generate the necessary **models**, **knowledge**, **designs** and **testing procedures** to develop **larger**, **more efficient and more durable composite tidal turbine blades**.

New materials for blades

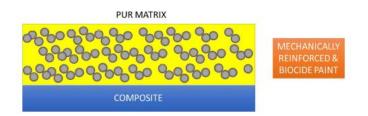
Blade Composite

Blade Coating

 Nano-enhanced material for fatigue and resistance composite

higher

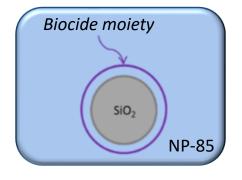
- Increased fouling resistance
- Metal-like cavitation resistance


FUNDITEC

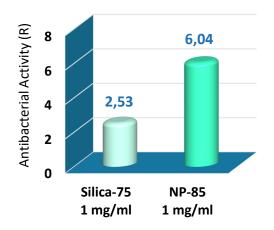
Anti-fouling and cavitation resistance coatings for tidal blades

WP3. Nano-reinforced composites, anti-fouling coatings and antifouling bio-mimetic surfaces

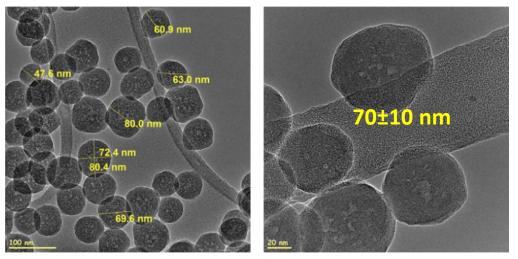
Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings


Biocide functionalised silica nanoparticles

Highly crosslinked PUR and PUD containing cationic copolymers with particles for cavitation and antifouling resistance



Task 3.3.1. Development of biocide functionalised silica nanoparticles

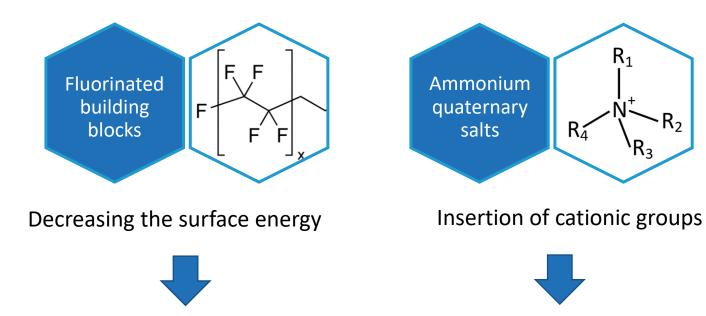


Antibacterial activity of nanoparticles against Staphylococcus aureus bacteria:

R (log) vs S.aureus

Transmmision Electron Microscopy (TEM):

Nanoparticles	DLS (nm)	TEM (nm)
NP-85	85	70±10

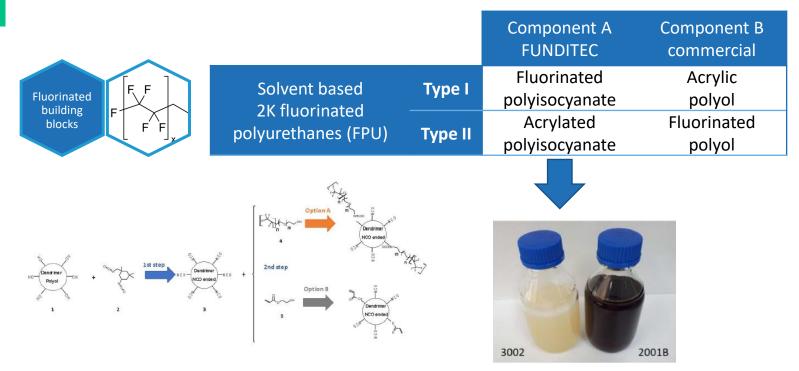

Functionalized nanoparticles presented high antibacterial activity.

Anti-fouling and cavitation resistance coatings for tidal blades

Task 3.3.2: Development of highly crosslinked PUD for cavitation and antifouling resistance

Synthesis of biocidal elastomeric polyurethanes by two strategies:

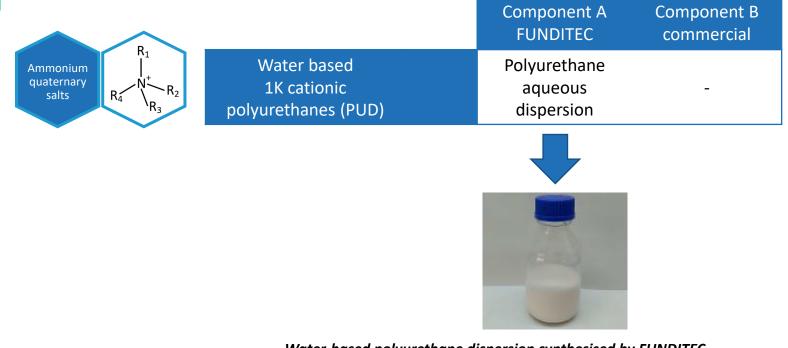
Solvent based **2K fluorinated polyurethanes**


Water based **1K cationic polyurethanes**

 R_1

Rá

Task 3.3.2: Development of highly crosslinked PUD for cavitation and antifouling resistance


Acrylated (letf) and fluorinated (right) polyisocyanates synthesised by FUNDITEC

Physical properties of 2K FPU coatings applied on CANOE composite substrates

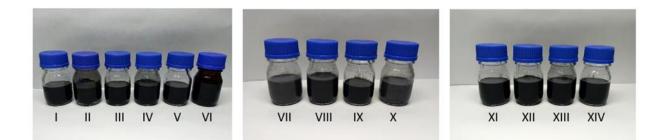
Code	Hardness	Adhesion	Tg (°C)
Туре І	Н	5B	23,8
Type II	4H	5B	28,8

Task 3.3.2: Development of highly crosslinked PUD for cavitation and antifouling resistance

Water-based polyurethane dispersion synthesised by FUNDITEC

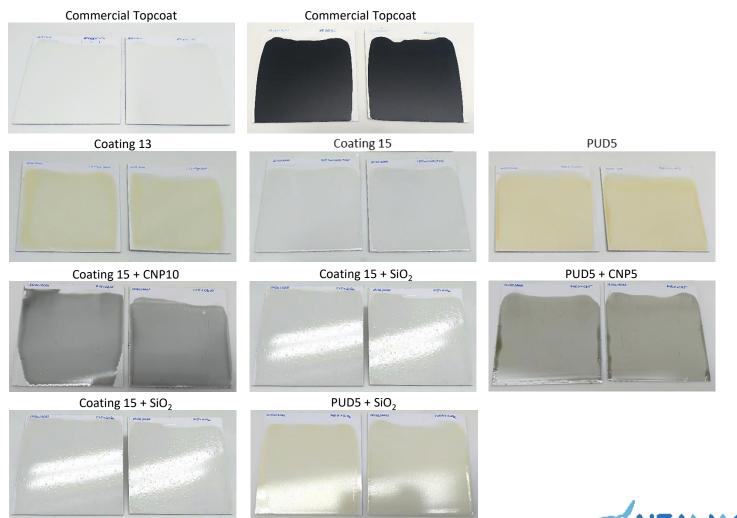
Physical properties of 1K PUD coatings applied on CANOE composite substrates

Code	Hardness	Adhesion	Tg (°C)
Coating PUD	5H	5B	44,6


Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings

• Incorporation of nanoparticles into the polyurethane matrix Incorporation of functionalised silica nanoparticles: Silica NPs (1%wt) + component B of the 2K coatings or + 1K water-based PUD.

Incorporation of carbon nano-complexes:


Carbon nano-complexes (SP1 protein and different nanoparticles:MWCNT, SWCNT, graphene and CB) + 2K and 1K coatings.

Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings

• Application of coatings on composite substrate

Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings

TESTS: biofouling and cavitation resistance

Tecnalia's Harshlab facility

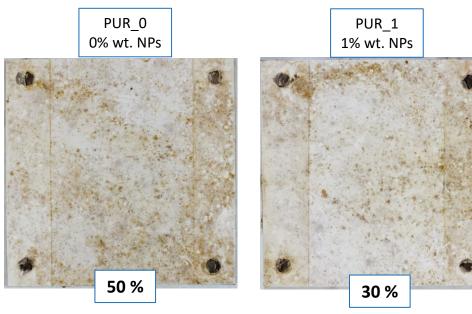
Tecnalia's Pasaia Port

FUNDITEC's Set-up of cavitation erosion test

Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings. TEST RESULTS

Biofouling resistant by exposure on sea immersion conditions (Port of Pasaia).

Composites + gelcoat + PUR with NPs (100 °C/1h)



Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings. TEST RESULTS

Biofouling resistant by exposure on sea immersion conditions (Port of Pasaia).

ASTM D6990-05 "Standard Practice for Evaluating Biofouling Resistance and Physical Performance of Marine Coating Systems".

Ref.	Substrate	NP-85 (% wt.)	% Fouling
PUR_0	Composite + Gelcoat	0	50 %
PUR_1	Composite + Gelcoat	1	30 %

The percentage cover of fouling was reduced 20 % compared to control system without nanoparticles

Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings. TEST RESULTS

Lab cavitation erosion tests (visual evaluation)

Code	0 min	1 min	2 min	3 min	4 min	5 min	% mass loss	Adhesion	Hardness	
Commercial topcoat white	C§						2,0286	ОВ	В	
Commercial topcoat black				5			2,5881	ОВ	В	
Coating 13	15				0		0,6385	5B	Н	
Coating 15						D	0,0187	5B	4H	
Coating 15 CNP							0,0350	5B	4H	
Coating 15 SiO ₂	in the second		N SA		e c.4%	and and	0,0813	5B	4H	
PUD5							0,0175	5B	5H	
PUD5 CNP					lega .		0,1576	5B	5H	
PUD5 SiO ₂							0,0415	5B	5H	

- Improved erosion resistance,
- Better adhesion and hardness compared to commercial ones.
- PUD5 and coating 15 are more resistant to erosion than coating 13.
- Incorporation of carbon and silica NP has no effect on erosion resistance, adhesion or hardness values.
- Best topcoats: Coating15 and PUD5.

Task 3.3. Permanent cavitation resistance, non-leaching anti-fouling coatings.

Coatings and composites are currently being evaluated for testing:

- Ageing resistance (natural and artificial ageing)
- Fatigue and impact resistance
- Anti-fouling performance in dynamic conditions
- Cavitation wear tests

Thank you for your attention!

Cecilia Agustin Saenz Ph. D

Gemma Berriozabal Solana Ph.D

gemma.berriozabal@tecnalia.com

FUNDITEC

Monika Tannenberg M. Sc

Sònia Sabaté M. Sc

Dulce Muñoz Ph. D

dmunoz@funditec.es

www.nemmo.eu

🔰 <u>@Nemmo_Project</u> 🔛 <u>info@nemmo.eu</u>

