Novel antifouling coating containing biocide functionalized silica nanoparticles in a polyurethane matrix for tidal blades

September 13th 2022

Pablo Benguria (TECNALIA)

Coordinator of NEMMO H2020 project (GA #815278)

Objective

The H2020 **NEMMO** project seeks to generate novel **models**, **knowledge**, **designs** and **testing procedures** to develop **more efficient composite TIDAL TURBINE BLADES** and thus lower the LCOE of tidal energy.

Objective

New materials for blades in NEMMO project:

1. Synthesis of permanent cavitation resistance, non-leaching anti-fouling coatings

A two steps approach was designed:

1. Synthesis of permanent cavitation resistance, non-leaching anti-fouling coatings

Synthesis of biocide functionalised silica nanoparticles

Antibacterial activity of nanoparticles against Staphylococcus aureus bacteria: R (log) vs S.aureus (24h)

Transmmision Electron Microscopy (TEM):

Nanoparticles	DLS (nm)	TEM (nm)
NP-85	85	70±10

Functionalized nanoparticles presented high antibacterial activity.

2. Development of highly crosslinked PUD for cavitation and antifouling resistance

Synthesis of biocidal **elastomeric polyurethanes** by two strategies:

2. Development of highly crosslinked PUD for cavitation and antifouling resistance

Acrylated (left) and fluorinated (right) polyisocyanates synthesised by FUNDITEC

Physical properties of 2K FPU coatings applied on CANOE composite substrates:

Code	Hardness	Adhesion	Tg (°C)	
Type I	н	5B	23,8	
Type II	4H	5B	28,8	

2. Development of highly crosslinked PUD for cavitation and antifouling resistance

Water-based polyurethane dispersion PUD5 synthesised by FUNDITEC

Physical properties of 1K PUD coatings applied on CANOE composite substrates:

Code	Hardness	Adhesion	Tg (°C)	
Coating PUD	5H	5B	44,6	

3. Incorporation of silica nanoparticles into the polyurethane matrix

Step 1: Dispersion of silica NPs (1%wt) in PUD matrix in:

- Bicomponent fluorinated polyurethanes coatings, or in
- Single component water-based PUD

<u>Step 2</u>: Incorporation of carbon nano-complexes for improving cavitation resistance:

Dispersions were prepared by mixing:

- A novel mix of carbon nano-complexes developed by SPNano containing SP1 protein and different nanoparticles (NP) such as: MWCNT, SWCNT, graphene and CB,
- > Dispersions of silica NP obtained in step 1 (NP + 2K or 1K coatings)

4. Application of coatings on composite substrate

1x 100μm PU coating1x 120μm Hempel Primer 45550Substrate: composite with gel coat (CANOE)

Code	Formulation
Primer	Commercial primer
7688W	Commercial topcoat
76890	Commercial topcoat

Code	Formulation				
Coating 13	2 components: 2001B + Uralac T cat. XK-651 Additives				

Coating 13

4. Application of coatings on composite substrate

Code	Formulation		
Coating 15	2 components: 3002 + LF910 T cat. XK-651 UV cat. Irgacure 184 Additives		
Coating 15 + CNP10	+ 0.1% CNP10		
Coating 15 + SiO ₂	+ 1% SiO ₂		

Code	Formulation		
PUD5	1 component: PUD5 UV cat. Irgacure 2959 Additives		
PUD5 + CNP5	+ 0.1% CNP5		
PUD5 + SiO ₂	+ 1% SiO ₂		

5. Testing of coatings

Biofouling and cavitation resistance:

- > Two fouling field tests:
 - ✓ HarshLab in the Bay of Biscay (Spain)
 - ✓ Dynamic antifouling test rig in Dublin (Ireland)
- Cavitation tests in the lab

Tecnalia's Harshlab facility Bay of Biscay (Spain)

DCU's dynamic antifouling test rig Dublin (Ireland) FU

FUNDITEC's Set-up of cavitation erosion test

https://harshlab.eu/en/

TECHNICAL SHEET

Dimensions: 8,5 m diameter; 7,0 m high, 120tons

Capacity

- → Exposition of more than 2000 samples in atmospheric, splash and immersion zones
- → Space for component testing: 120 m² (60 m² outdoor deck, 57 m² in hold)
- → Main crane capacity: **1 ton** @ 5,25 m
- $\rightarrow~$ Auxiliar davit capacity: **300 kg** @ 1,5 m
- → Maximum payload: **9 ton**.

Grid connected (spring 2023)

- → Umbilical cable for **power and communications**
- → Connected to BiMEP's submarine grid at 690V/160 kVA
- → Internal working voltage: alternating current at 400V and 230V, and direct current at 24V and 12V
- → Local photovoltaic and batteries system for feeding essential equipment onboard (AIS, lantern, etc)
- $\rightarrow\,$ Designed for connecting third party devices testing in BiMEP area to the submarine grid.

5. Testing of coatings

Dynamic antifouling test rig (Dublin)

Designed and built to study **antifouling** properties under **dynamic conditions in an estuarine environment**

Key Characteristics

- Two blade impeller with symmetrical flat profile
- Impeller diameter: 1.2m
- Max Rotational speed: 286 RPM
- Uniform stress distribution for given radial position
- Hydrodynamic stresses increasing radially to $\sim 500~N/m^2$

6. Preliminary results

Influence on NPs on biofouling resistance by exposure on static sea immersion conditions in the Bay of Biscay

PUR_0 0 days 70 days 100 days 0% wt. NPs Image: Constraint of the second second

6. Preliminary results

Influence on NPs on biofouling resistance by exposure on static sea immersion conditions in the Bay of Biscay

Ref.	Substrate	NP-85 (% wt.)	% Fouling
PUR_0	Composite + Gelcoat	0	50 %
PUR_1	Composite + Gelcoat	1	30 %

The percentage cover of fouling was **reduced 20 %** compared to control system without nanoparticles

Fouling coverage measured according ASTM D6990-05 "Standard Practice for Evaluating Biofouling Resistance and Physical Performance of Marine Coating Systems".

6. Preliminary results

Lab cavitation erosion tests

Code	0 min	1 min	2 min	3 min	4 min	5 min	% mass loss	Adhesion	Hardness
Commercial 7688W (white)	4						2,0286	ОВ	В
Commercial 76890 (black)		Q					2,5881	ОВ	В
Coating 13	1			8			0,6385	5B	н
Coating 15						2	0,0187	5B	4H
Coating 15 CNP							0,0350	5B	4H
Coating 15 SiO ₂	kana te	N sets di ³	Karak de	N. S.	-	an at	0,0813	5B	4H
PUD							0,0175	5B	5H
PUD CNP						all -	0,1576	5B	5H
PUD SiO ₂							0,0415	5B	5H

- ✓ Improved **erosion resistance**,
- ✓ Better adhesion and hardness compared to commercial ones.
- Incorporation of carbon and silica NP has **no effect** on erosion resistance, adhesion or hardness values.
- ✓ Best topcoats (so far): Coating 15 and PUD.

Stay tuned for further results!!

http://nemmo.eu/

Coatings and composites are currently being evaluated for:

- > Further data on **ageing resistance** (accelerated and field testing)
- > Antifouling behaviour under **dynamic conditions**
- > Fatigue and impact resistance
- Further data on cavitation wear testing

Thanks for your attention!

Gemma Berriozabal Solana Ph.D

Cecilia Agustin Saenz

Pablo.Benguria@tecnalia.com

www.nemmo.eu

<u>@Nemmo Project</u> <u>info@nemmo.eu</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815278.

Monika Tannenberg M. Sc

Sònia Sabaté M. Sc

Dulce Muñoz Ph.D

dmunoz@funditec.es

